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The conventional gradient and related differential operators have been uniquely extended 
to a cluster of nodal points. Based on general algebraic grounds, such extensions are ap-
plicable to any discrete pattern while avoiding artificial shape functions or tessellations. 
Thus, various constitutive equations can be represented in a discrete form that enables the 
numerical modeling immediately in terms of nodal variables. Accuracy of this approach 
should ameliorate by the reduction of nodal spacing with the increasing computational 
power. 
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1. INTRODUCTION 

Coming back to 5th century BC, the famous paradox of 
Achilles and a tortoise regains its significance in numeri-
cal models as far as the increasing computational power 
condenses arrays of treated nodes so that maps of related 
variables get appearance of continuous fields. At the same 
time, whatever spacing of nodal points, they remain in-
tractable by the differential operators defined for infinites-
imal domains. Hence, to directly make use of constitutive 
differential equations in the numerical modeling, these op-
erators should be properly extended to discrete data. Even 
though such counterparts of gradient will extract only lo-
cally linear parts of underlying continuous fields, in dense 
enough nodal patterns the neglected non-linear residuals 
are insignificant. 

Meanwhile, instead of the truly discrete approach, ar-
tificial functions are commonly presumed to mimic con-
tinuous fields between the nodes [1,2]. For instance, a 
virtual deformation field corresponding to nodal dis-
placements is sought to nullify internal nodal forces as 
prescribed by the stress balance condition. Let alone in-
accuracy of such a priori approximations called shape 
functions, they lead to computational expenses particu-
larly crucial in case of element-free models [3,4]. 

Although the latter avoid an awkward remeshing proce-
dure peculiar to specific problems, respective shape 
functions prove to be overcomplicated [5] and hence 
hardly suitable for routine applications because of an ex-
cessive computational cost. To exclude this drawback of 
the element-free modeling, the present paper considers 
discrete extensions of the gradient and related operators 
applicable immediately to nodal variables. Based on the 
general algebraic grounds [6,7], these terms are uniquely 
defined and their use is illustrated on various constitutive 
equations of solid mechanics. 

2. DISCRETE DIFFERENTIAL OPERATORS 

Let a cluster of nodal points be specified by 3×N matrix R 
composed of columns which contain Cartesian compo-
nents of their position vectors jr  (j = 1, 2,…, N). To illus-
trate the discrete differentiation, similar matrix U made of 
nodal displacements ju  is also considered. As shown in 
[8,9], a pseudoinverse coordinate matrix  

( ) 11 T T −− =R R RR  (1) 

of N×3 dimensions, where determinant of TRR  differs 
from zero and superscript T means transposition, is the 
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unique expression of gradient that has relevant properties. 
Specifically, the related uniform distortion  

( )1 T−= ∇ =D u UR  (2) 

suggests matrix * T=U D R  of virtual displacements 
whose components are most close to those of given U in 
terms of the mean square deviation. This proximity corre-
sponds to the Moore-Penrose pseudoinverse [6,7] that 
takes on a specific form of Eq. (1) when applied to a set of 
discrete coordinates. However, the considered matrix 
hides contributions of individual nodes to the gradient or 
any related operator. To get representation of 1−R  in a form 
more apparent from this viewpoint, we will employ partial 
gradient vectors as follows. 

2.1. Gradient 

In the considered cluster of N nodal points each of the lat-
ter is specified by individual gradient vector  

1

1

,
N

i i k k
k

−

=

 
= ⊗ 

 
⋅ ∑g r r r  (3) 

where ir  are position vectors, dot and ⊗ indicate the scalar 
and tensor products, respectively. According to Ref. [10], 
this enables a simple expression of the above-mentioned 
distortion  

1

.
N

i i
i=

⊗= ∇ =∑D u g u  (4) 

To exclude irrelevant 0≠D  in case of the rigid body trans-
lation (equal iu ), the coordinate origin of the cluster is se-
lected so that  

1

0.
N

i
i=

=∑r  (5) 

A similar formulation of discrete gradient was intro-
duced in Ref. [11] regardless of the pseudoinverse con-
cept; however, this finding remains equivalent to the latter 
in terms of algebraic properties. Unlike an approach ad-
justed to lattice-like structures [12], the considered 
method does not strongly restrict the arrangement of nodal 
points. Indeed, to ensure existence of an inverse tensor in 
Eq. (3), only colinear and coplanar patterns are rejected in 
2D and 3D modeling, respectively.  

The considered discrete differentiation can apply to 
nodal variables of any type. For example, if scalar poten-
tials iϕ  are treated instead of previous displacement vec-
tors, the underlying vector field is expressed by  

1

.
N

i i
i=

= −∇ϕ = − ϕ∑e g  (6) 

Performance of the present approach has been verified 
first on the strain mapping of low deformed specimens [13], 
where movements of nodal points were recorded by the dig-
ital image correlation. As to numerical models of solid me-
chanics, they can avoid continuous approximations insofar 
as Eq. (4) enables expression of nodal distortions and, 
hence, strains and stresses immediately in terms of nodal 
displacements. 

2.2. Divergence 

Replacement of dyads in Eq. (4) by scalar products of in-
volved vectors apparently results in the divergence of dis-
placements 

1

N

i i
i=

∇ ⋅⋅ = ∑u g u  (7) 

that specifies the local dilatation of deformed matter. Sim-
ilarly, the stress divergence important in solid mechanics 
is expressed by 

1

.
N

i i
i=

∇ ⋅ = ⋅∑ gσ σ  (8) 

It is worth noting that the latter implies double differenti-
ation as far as each nodal stress iσ  is derived for some sub-
cluster of M nodes shifted from the common coordinate 
origin. To this end, an expression of linear or non-linear 
elastic response applies to strain  

( )( )

1

( ) / 2
M

i j
i i

j j j
j=

⊗ + ⊗=∑ g u u gε  (9) 

that is a symmetric part of distortion according to Eq. (4). 
For simplicity sake, we will illustrate this approach on 2D 
models. To quicken calculations and enhance precision of 
the local stress divergence by diminishing differentiation 
domains, computations are implemented as follows. 

First, related to nodal displacement (Fig. 1a), virtual 
strains iε  are derived with Eq. (9) for the triple sub-clus-
ters (M = 3) shown in Fig. 1b; next, to calculate the stress 
divergence, respective stresses iσ  are ascribed to provi-
sional nodal points symmetrically situated on virtual bor-
der lines connecting the permanent nodes as illustrated in 
Fig. 1c. Thus, if i and j are directions of axes X and Y, re-
spectively, partial gradient vectors expressed by Eq. (3) 
with N = 4 take on form 

( ) ( )1 1
1 2/ 2, / 2,   b b− −= + = − +g i j g i j

( ) ( )1 1
3 4/ 2, / 2.b b− −= − + = −g i j g i j  (10) 

In this case Eq. (8) results in 

( ) ( ){ }1
1 4 2 3 1 2 3 4 / 2.b−∇ ⋅ = ⋅ + − − + ⋅ + − −i jσ σ σ σ σ σ σ σ σ

 (11) 
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Therefore, with Eq. (8) kept in mind, the nodal force per 
unit thickness can be evaluated by  

2

1

N

j j
j

b
=

= − ⋅∑f g σ  (12) 

that is a discrete extension of the conventional stress bal-
ance equation. 

2.3. Rotor 

The discrete rotor in terms of partial gradient vectors can 
apply to vector or tensor variables. Thus, when applied to 
nodal displacements, it results in the rotation vector  

1

/ 2 / 2
N

i i
i=

 
= ∇× = × 

 
∑w u g u  (13) 

corresponding to the skew part of distortion. If field D of 
the nodal elastic distortions is known, the dislocation den-
sity tensor  

1

N

i i
i=

= ∇× = ×∑D g Dα  (14) 

is expressed, extending the continual theory of defects [14]. 
One can make use of this expedient since up-to-date 
techniques of electron microscopy enable measurements 
of iD  at separated points of a planar section [15]. Besides, 
when applied twice, the same operator extends to nodal 
variables the known Saint-Venant condition of strain 
compatibility: 

( ))

1

( ( )

1

0.
N M

i j
i

j
j

i

i= =

∇× ×∇ = × × =∑∑ g gε ε  (15) 

Similar to Eqs. (8) and (9), respectively, N and M in this 
expression number auxiliary sub-clusters and nodal points 
in each of the latter. The middle part of Eq. (15) is also 
applicable in numerical modeling of internal stresses. In-
deed, when nodal strains are elastic, a deviation of this 
term from zero is the discrete counterpart of strain incom-
patibility tensor [16] specifying strength of a stress source 
(defect).  

2.4. Laplasian and gradient of divergence 

Based on partial gradient vectors, Laplasian of any field F 
is also expressed in terms of nodal variables: 

1

( ) ( )

1

.
N M

i
i

i
j j

j

i

= =

∆ ⋅= ∇ ⋅∇ = ∑∑F F g g F  (16) 

In solid mechanics, for example, nodal stress tensors ( )
j
iσ  

should be taken for ( )
j

iF  to extend the constitutive Bel-
trami-Michell equation. Alternatively, to make use of 
Lamé’s equation, the Laplasian of displacements should 
be derived from nodal vectors ( ) .j

iu  The gradient of diver-
gence is another related operator needed in this special 
case and some other applications. Within the present for-
mulation the desired term takes on form  

( )( ) ( )

1 1

.
N M

i j
i

j
i j

i

= =

∇∇ ⋅ = ⋅∑∑u g g u  (17) 

3. SOME EXAMPLES 

To illustrate use of nodal gradient vectors, principal in this 
paper, let us consider first a square cluster undergoing two 
opposite nodal displacements 2 1( 2 )u= − =u u i  as shown 
in Fig. 2a. In this case Eq. (4) with gradient vectors related 
to the four corners results in virtually uniform simple shear 

( )2 / ,D u b= ⊗j i  (18) 

that suggests displacements (Fig. 2b) 
* * *
2 3 1 .u= = − =u u u i  (19) 

The latter notably differ from given 1u  and 2u , but provide 
the same uniform distortion when substituted in Eq. (4). In 
other words, fractions *

i i i−u= uδ  of iu  (i = 1, 2, 3, 4) ren-
der no effect on the gradient operation and prove to be in 
a sense excessive. This result illustrated in Fig. 2c sup-
ports the present formulation as far as such fractions are 
due to essentially inhomogeneous distortions averaging 
out to zero and hence irrelevant to the sought distortion of 
the whole cluster. 

Fig. 1. Treated variables: (a) nodal displacements and (b) related strains of triangle sub-clusters; (c) virtual locations of corresponding 
stresses to derive a nodal force at the cluster center in terms of stress divergence. 
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Next, applicability of the discrete stress balance equa-
tion (Subsection 2.2) to discrete models of solid mechanics 
deserves consideration. For instance, this equation enables 
determination of local stiffness terms while avoiding prede-
fined shape functions. Indeed, to determine the force-to-dis-
placement ratios, Eq. (12) can express nodal forces due to 
trial nodal displacements. Apart from the numerical model-
ing of continuum represented by a set of virtual nodal 
points, the considered formulation becomes most natural 
when applied to physically discrete structures such as cores 
of crystal defects. For instance, a short-range disorder intro-
ducing the Burgers vector of an edge dislocation in a virtual 
initial configuration (Fig. 3a) violates the stress balance be-
tween neighboring atoms. Thus, according to Ref. [10], in 
the crystal that has a finite cross section containing 10050 
atoms the maximum magnitude of f reaches / 2Gb , where 
G is the shear modulus. To approach the balance ( f = 0 at 
each atom) with a stated tolerance, corrective displacements 
proportional to fictitious forces expressed by Eq. (12) 
should be repeatedly applied. Fig. 3b compiled from 
Ref. [10] illustrates the relaxed state where such forces have 
been reduced by three orders. A remark should be made that 

these results are due to isotropic non-linear elasticity ex-
pressed in terms of theoretical crystal strength (TCS) to al-
low for specific stiffness on the core scale. 

Corresponding to the above-mentioned relaxation de-
gree, Fig. 4 shows a final shape of the crystal where short-
range stresses at the dislocation core prove to comply with 
the TCS and predicted core dimensions are very close to 
relevant data of high-resolution electron microscopy [17]. 

4. SPECIAL PROPERTIES OF PERIODICAL 
NODAL PATTERN 

Usage of atom positions for nodal points is indispensable 
in application of the present formulation to crystalline 
structures. On the one hand, periodical patterns ensure the 
natural symmetry of crystal properties [12]; on the other 
hand, this approach explicitly reflects the short-range dis-
order at microscopic cores of lattice defects. At the same 

Fig. 2. Deformed trial cluster: (a) applied nodal displacements, (b) their constituents due to the uniform part of distortion, and (c) the 
residuals filtered out in discrete differentiation over the whole cluster. 

Fig. 3. Dislocated crystal: (a) a representative part of the virtual 
initial configuration, (b) residual fictitious forces in the relaxed 
crystal over its finite section (10050 atoms). 

Fig. 4. Appearance of the lateral (a) and initially horizontal (b) 
crystal borders due to insertion of an edge dislocation according 
to Fig. 3a and the following relaxation. 
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time, if a discrete model mimics some continuous matter, 
the arrangement of separated nodes deserves a special dis-
cussion as follows. 

Since the present paper focuses on solid mechanics, it 
is relevant to revisit the nodal stiffness issue. Conventional 
stiffness coefficients in expression 

m mn nf C u=  (20) 

of nodal forces in terms of nodal displacements should be 
symmetric insofar as 

2 2

,mn nm
n m m n

W WC C
u u u u
∂ ∂

= − = − =
∂ ∂ ∂ ∂

 (21) 

where W is elastic energy. Natural m and n in these equa-
tions simultaneously number both the considered points 
and Cartesian components of related variables; in case of 
2D model with K nodes, m, n = 1, 2,…, 2K and any m = n 
corresponds to similar components of force and displace-
ment at the same point. Unlike the total numeration in 
Eqs. (20) and (21), it is advisable to make use of local de-
notations (Fig. 1a) facilitating analysis. Thus, with the 
central node numbered by zero, stiffness components  
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are readily expressed in terms of trial nodal displace-
ments and resulting forces. As illustrated by Fig. 5a, the 
desired symmetry in interaction of different nodes (

( )A Bf u  and ( )B Af u  at A B≠r r ) is ensured only if they 
have similar surroundings, i.e., the whole pattern has 
translational symmetry; otherwise (Fig. 5b), two dissim-
ilar clusters different in their discrete gradients would 
suggest ( ) ( ) .A

xx x
B

x
A BC C≠  Periodical patterns also keep 

Eq. (21) valid for any single node A; indeed, 
( ) ( ) 0A
xy y

A
x

A AC C= =  since all its neighbors are situated sym-
metrically relative to directions x and y. 

Periodicity of discrete models physically prescribed by 
Eq. (21) leads to both advantages and difficulties. This re-
quirement facilitates the modeling as far as all mnC  can be 
predetermined on a unique arrangement of neighboring 
nodes. Moreover, since 2~f b gσ  with ~ 1/g b and 

~ ~ /G Gu bσ ε  in Eq. (12), force-to-displacement ratios 
do not depend on b and, hence, the same stiffness terms 
will be valid for whatever periodical pattern condensed to 
treat singular fields. At the same time, to separately simu-
late related local domains, specific boundary conditions 
should be somehow derived from the periodical pattern 
uniform over the whole model.  

Appropriate procedures to resolve the indicated prob-
lem would in a sense resemble element-free inclusions in 
FEM models [18] and singular enrichment functions on 
the background of a uniform FEM mesh [19]. Even though 
the considered approach suggests some complications, it 
will be hardly inferior to the usually gradual refinement of 
discretization when approaching stress singularities. In-
deed, the latter method still remains intuitive and does not 
ensure the best compromise between accuracy and com-
putational efficiency. Besides, the violation of stiffness 
symmetry in case of non-periodical discrete patterns 
(Fig. 5b) suggests the artificial non-uniformity of elastic 
properties over the simulated continuous matter. 

5. CONCLUDING REMARKS  

The conventional gradient and related differential operators 
have been uniquely extended to nodal variables regardless 
of uncertain fields between the nodal points. Whichever 
phenomena are simulated, these findings provide proper 
discrete counterparts of governing differential equations di-
rectly applicable in the numerical modeling. When special 
constraints (e.g., symmetry of stiffness) do matter, periodi-
cal nodal patterns are indispensable which suggest both lim-
itations and advantages. At the same time, whatever discrete 
pattern is suitable if the problem is essentially geometrical 
(computer graphics, strain mapping, etc.). 

A remark should be made as well that various gradient 
theories (see, e.g., Refs. [19,20]) have been developed to 
implicitly reflect discrete constitution of real solids within 

Fig. 5. Interaction of neighboring nodes: (a) symmetry of stiffness in case of uniform discretization, and (b) violation of the symmetry 
otherwise. 



22 A.A. Zisman, N.Yu. Ermakova 

the framework of continuum mechanics. It would be inter-
esting to verify their specific parameters by the proposed 
method that can directly treat in mechanistic terms the in-
teraction of atoms in crystalline matter.  
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УДК 539.3 

Применение дискретных дифференциальных операторов  
в численных моделях механики твердого тела 

А.А. Зисман, Н.Ю. Ермакова 

Физико-механический институт, Санкт-Петербургский политехнический университет Петра Великого,  
Политехническая ул., д. 29, Санкт-Петербург, 195251, Россия 

 

Аннотация. В статье представлены результаты применения градиента и связанных с ним дифференциальных операторов к 
массиву узловых точек сплошной среды. Этот подход позволяет избежать введения искусственных функций формы для пред-
ставления определяющих соотношений в моделях механики твердого тела. Численное моделирование может быть выполнено 
непосредственно в терминах узловых переменных. Точность моделирования возрастает при уменьшении расстояния между 
узлами, однако требует дополнительных вычислительных мощностей. 

Ключевые слова: дискретный градиент; дифференциальный оператор; определяющие соотношения; численное моделирование 
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